Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
2.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542103

ABSTRACT

Nano-sized biomaterials are innovative drug carriers with nanometric dimensions. Designed with biocompatibility in mind, they enable precise drug delivery while minimizing side effects. Controlled release of therapeutic substances enhances efficacy, opening new possibilities for treating neurological and oncological diseases. Integrated diagnostic-therapeutic nanosystems allow real-time monitoring of treatment effectiveness, which is crucial for therapy personalization. Utilizing biomaterials as nano-sized carriers in conjunction with drugs represents a promising direction that could revolutionize the field of pharmaceutical therapy. Such carriers represent groundbreaking drug delivery systems on a nanometric scale, designed with biocompatibility in mind, enabling precise drug delivery while minimizing side effects. Using biomaterials in synergy with drugs demonstrates significant potential for a revolutionary impact on pharmaceutical therapy. Conclusions drawn from the review indicate that nano-sized biomaterials constitute an innovative tool that can significantly improve therapy effectiveness and safety, especially in treating neurological and oncological diseases. These findings should guide researchers towards further studies to refine nano-sized biomaterials, assess their effectiveness under various pathological conditions, and explore diagnostic-therapeutic applications. Ultimately, these results underscore the promising nature of nano-sized biomaterials as advanced drug carriers, ushering in a new era in nanomedical therapy.


Subject(s)
Biocompatible Materials , Neoplasms , Humans , Biocompatible Materials/therapeutic use , Drug Delivery Systems/methods , Drug Carriers , Neoplasms/drug therapy
3.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255859

ABSTRACT

Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.


Subject(s)
Drug Carriers , Nanocomposites , Drug Delivery Systems , Polysaccharides , Lipids
4.
Materials (Basel) ; 16(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068160

ABSTRACT

The initial predictions of the importance of geopolymers primarily assumed use mainly in the construction sector. However, as research progresses, it is becoming clear that these versatile materials demonstrate the ability to greatly exceed their original applications, as characterized in detail in this review article. To the best of our knowledge, there is no literature review concerning geopolymer materials that compiles the diverse applications of these versatile materials. This paper focuses on geopolymer applications beyond the construction industry. The surprising application potential of geopolymers in medicine has become a topic of particular interest. Therefore, considerable attention in this paper is devoted to characterizing the utility of these materials in tissue engineering, dentistry and drug delivery systems. Geopolymers not only have exceptional heat resistance and compressive strength, making them durable and resistant to manipulation (over five times less drug released from the geopolymer carrier compared to the commercial formulation), but also provide a robust solution for extended-release drug delivery systems, especially in opioid formulations. Their chemical stability, porous structure and ability to maintain structure after repeated regeneration processes speak to their potential in water treatment. Geopolymers, which excel in the energy industry as refractory materials due to their resistance to high temperatures and refractory properties, also present potential in thermal insulation and energy storage. It was demonstrated that geopolymer-based systems may even be 35% cheaper than conventional ones and show 70% lower thermal conductivity. In terms of protection against microorganisms, the possibility of modifying geopolymers with antimicrobial additives shows their adaptability, maintaining their effectiveness even under high-temperature conditions. Research into their use as anticorrosion materials is targeting corrosion-resistant coatings, with geopolymers containing graphene oxide showing particularly promising results. The multitude of potential applications for geopolymers in a variety of fields reflects their enormous potential. As research progresses, the scope of their possibilities continues to expand, offering innovative solutions to pressing global challenges.

5.
Heliyon ; 9(7): e18319, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539205

ABSTRACT

In this study, we have developed a new ultrasonic synthesis method of dibenzoepines using olanzapine and quetiapine, which are well-known drugs for the treatment of schizophrenia and bipolar disorder. The method is based on the N-alkylation reaction of the piperazine fragment in tricyclic compounds with methyl iodide or 2-(2-chloroethoxy)ethanol as the alkylating agent, respectively. The synthesis reactions were carried out in an ultrasonic bath with solvents such as acetonitrile or dimethylformamide in the presence of potassium or sodium carbonate or sodium hydroxide and metal-free, ecological phase transfer catalyst at a temperature of 40-50 °C. This allowed us to obtain olanzapine in 1 h (Y = 67%), and quetiapine in 3 h (Y = 72%). An ultrasonic reactor (Qsonica Q700) was used in the synthesis of olanzapine and made it possible to shorten the reaction time to 10 min and obtain 90% yield with very high purity. The developed method allows obtaining compounds in mild conditions and in a short time, thanks to which the process is more ecological than others described in the literature.

6.
J Biomed Mater Res B Appl Biomater ; 111(12): 2077-2088, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596849

ABSTRACT

Bone tissue regeneration is one of the main areas of tissue engineering. A particularly important aspect is the development of new innovative composite materials intended for bone tissue engineering and/or bone substitution. In this article, the synthesis and characterization of ceramic-polymer composites based on polyvinylpyrrolidone, poly(vinyl alcohol) and hydroxyapatite (HAp) have been presented. The first part of the work deals with the synthesis and characterization of the ceramic phase. It was demonstrated that the obtained calcium phosphate is characterized by a heterogeneity and porosity indicating simultaneously its large specific surface area. Additionally, in the wound healing test, it was shown that the obtained powder supports the regeneration of L929 cells. Next, HAp-containing composite materials were obtained in the waste-free photopolymerization process and characterized in detail. It was proved that the obtained composites were characterized by sorption properties and stability during 12-day incubation in simulated physiological liquids. Importantly, the obtained composites showed no cytotoxic effect against the L929 murine fibroblasts - the cell viability was 94.5%. Then, confocal microscopy allowed to observe that murine fibroblasts effectively colonized the surface of the obtained polymer-ceramic composites, covering the entire surface of the biomaterial. Thus, the obtained results confirm the high potential of the obtained composites in the application of bone tissue regenerative medicine.

7.
RSC Adv ; 13(30): 20467-20476, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37435368

ABSTRACT

New derivatives of the known antipsychotic drug olanzapine have been obtained as potential compounds with anticancer activity in two metabolically different breast cancer cell lines: MCF-7 and triple negative MDA-MB-231. The compounds were obtained under phase transfer catalysis (PTC) in the presence of microwave irradiation (MW) or ultrasound (")))"), evaluating the effect of solvents such as dimethylformamide, water, or choline chloride/urea (natural deep eutectic solvent, NaDES). In the best option, the compounds were obtained within 2 minutes with a yield of 57-86% in MW. Two of the obtained compounds which have a naphthalimide moiety and a pentyl (7) or hexyl chain (8) show pronounced cytotoxicity. Interestingly, neither olanzapine nor desmethylolanzapine (DOLA), which was one of the substrates for the synthesis reaction, showed any significant activity in the study.

8.
Bioorg Chem ; 139: 106730, 2023 10.
Article in English | MEDLINE | ID: mdl-37473481

ABSTRACT

According to WHO, infectious diseases are still a significant threat to public health. The combine effects of antibiotic resistance, immunopressure, and mutations within the bacterial and viral genomes necessitates the search for new molecules exhibiting antimicrobial and antiviral activities. Such molecules often contain cyclic guanidine moiety. As part of this work, we investigated the selected antimicrobial and antiviral activity of compounds from the cyclic arylguanidine group. Molecules were designed using molecular modeling and obtained using microwave radiation (MW) and sonochemical ()))) methods, in accordance with the previously developed pathways. The obtained compounds were screened for the ability to inhibit the growth of Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans. The capacity to block the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell was probed using a bioluminescence immunoassay. The cytotoxicity and hemolytic properties of the most active molecules were also evaluated. The N-[2-(naphthalen-1-yl)ethyl]-5-phenyl-1,4,5,6-tetrahydro-1,3,5-triazin-2-amine 12j showed a high inhibition of Staphylococcus aureus and Cryptococcus neoformans (MIC ≤ 0.25 µg/mL), with no cytotoxic nor hemolytic effect (CC50, HC10 > 32 µm/mL). The CO-ADD platform identified many potentially useful molecules. A particularly rich population was examined in the database of the N.D. Zelinsky Institute of Organic Chemistry, in which 2517 active molecules (MIC ≤ 32 mg/mL) were found, of which about 10% are active at very low concentrations (MIC ≤ 1 mg/mL).


Subject(s)
Anti-Infective Agents , COVID-19 , Cryptococcus neoformans , Antiviral Agents/pharmacology , Microbial Sensitivity Tests , SARS-CoV-2 , Anti-Infective Agents/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology
9.
Int J Mol Sci ; 24(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37240084

ABSTRACT

The development of multifunctional dressing materials with beneficial properties for wound healing has become a recent focus of research. Many studies are being conducted to incorporate active substances into dressings to positively impact wound healing processes. Researchers have investigated various natural additives, including plant extracts and apiproducts such as royal jelly, to enhance the properties of dressings. In this study, polyvinylpyrrolidone (PVP)-based hydrogel dressings modified with royal jelly were developed and analyzed for their sorption ability, wettability, surface morphology, degradation, and mechanical properties. The results showed that the royal jelly and crosslinking agent content had an impact on the physicochemical properties of the hydrogels and their potential for use as innovative dressing materials. This study investigated the swelling behavior, surface morphology, and mechanical properties of hydrogel materials containing royal jelly. The majority of the tested materials showed a gradual increase in swelling ratio with time. The pH of the incubated fluids varied depending on the type of fluid used, with distilled water having the greatest decrease in pH due to the release of organic acids from the royal jelly. The hydrogel samples had a relatively homogeneous surface, and no dependence between composition and surface morphology was observed. Natural additives like royal jelly can modify the mechanical properties of hydrogels, increasing their elongation percentage while decreasing their tensile strength. These findings suggest possible future applications in various fields requiring high flexibility and elasticity.


Subject(s)
Hydrogels , Wound Healing , Hydrogels/chemistry , Fatty Acids , Bandages
10.
Materials (Basel) ; 16(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37176360

ABSTRACT

The demand for geopolymer materials is constantly growing. This, in turn, translates into an increasing number of studies aimed at developing new approaches to the methodology of geopolymer synthesis. The range of potential applications of geopolymers can be increased by improving the properties of the components. Future directions of studies on geopolymer materials aim at developing geopolymers showing excellent mechanical properties but also demonstrating significant improvement in thermal, magnetic, or sorption characteristics. Additionally, the current efforts focus not only on the materials' properties but also on obtaining them as a result of environment-friendly approaches performed in line with circular economy assumptions. Scientists look for smart and economical solutions such that a small amount of the modifier will translate into a significant improvement in functional properties. Thus, special attention is paid to the application of nanomaterials. This article presents selected nanoparticles incorporated into geopolymer matrices, including carbon nanotubes, graphene, nanosilica, and titanium dioxide. The review was prepared employing scientific databases, with particular attention given to studies on geopolymer nanocomposites. The purpose of this review article is to discuss geopolymer nanocomposites in the context of a sustainable development approach. Importantly, the main focus is on the influence of these nanomaterials on the physicochemical properties of geopolymer nanocomposites. Such a combination of geopolymer technology and nanotechnology seems to be promising in terms of preparation of nanocomposites with a variety of potential uses.

11.
Materials (Basel) ; 16(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36984346

ABSTRACT

Tamoxifen is a well-known active substance with anticancer activity. Currently, many investigations are performed on the development of carriers that provide its effective delivery. Particular attention is directed toward the formation of cyclodextrin-drug complexes to provide prolonged drug delivery. According to our knowledge, carriers in the form of polyvinylpyrrolidone (PVP)/gelatin-based hydrogels incorporated with ß-cyclodextrin-tamoxifen complexes and additionally modified with nanogold have not been presented in the literature. In this work, two series of these materials have been synthesized-with tamoxifen and with its complex with ß-cyclodextrin. The process of obtaining drug carrier systems consisted of several stages. Firstly, the nanogold suspension was obtained. Next, the hydrogels were prepared via photopolymerization. The size, dispersity and optical properties of nanogold as well as the swelling properties of hydrogels, their behavior in simulated physiological liquids and the impact of these liquids on their chemical structure were verified. The release profiles of tamoxifen from composites were also determined. The developed materials showed swelling capacity, stability in tested environments that did not affect their structure, and the ability to release drugs, while the release process was much more effective in acidic conditions than in alkaline ones. This is a benefit considering their use for anticancer drug delivery, due to the fact that near cancer cells, there is an acidic environment. In the case of the composites containing the drug-ß-cyclodextrin complex, a prolonged release process was achieved compared to the drug release from materials with unbound tamoxifen. In terms of the properties and the composition, the developed materials show a great application potential as drug carriers, in particular as carriers of anticancer drugs such as tamoxifen.

12.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362096

ABSTRACT

Considering the key functions of the 5-HT7 receptor, especially in psychiatry, and the fact that effective and selective 5-HT7 receptor ligands are yet to be available, in this work, we designed and synthesized novel 1,3,5-triazine derivatives particularly based on the evaluation of the effect of substituents at aromatic rings on biological activity. The tested compounds showed high affinity to the 5-HT7 receptor, particularly ligands N2-(2-(5-fluoro-1H-indol-3-yl)ethyl)-N4-phenethyl-1,3,5-triazine-2,4,6-triamine 2 (Ki = 8 nM) and N2-(2-(1H-indol-3-yl)ethyl)-N4-(2-((4-fluorophenyl)amino)ethyl)-1,3,5-triazine-2,4,6-triamine 12 (Ki = 18 nM) which showed moderate metabolic stability, and affinity to the CYP3A4 isoenzyme. As for the hepatotoxicity evaluation, the tested compounds showed moderate cytotoxicity only at concentrations above 50 µM. Compound 12 exhibited less cardiotoxic effect than 2 on Danio rerio in vivo model.


Subject(s)
Receptors, Serotonin , Serotonin , Receptors, Serotonin/metabolism , Ligands , Serotonin/metabolism , Triazines/pharmacology , Structure-Activity Relationship
13.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232921

ABSTRACT

Hydrogels belong to the group of polymers with a three-dimensional crosslinked structure, and their crosslinking density strongly affects their physicochemical properties. Here, we verified the impact of both the average molecular weight of crosslinking agents used during the photopolymerization of hydrogels and that of their content on selected properties of these materials. First, PVP-based hydrogels modified with Aloe vera juice and L-ascorbic acid were prepared using UV radiation. Next, their surface morphology was characterized via optical scanning electron microscopy, whereas their chemical structure was investigated by FT-IR spectroscopy. Moreover, we verified the tendency of the hydrogels to degrade in selected physiological liquids, as well as their tensile strength, percentage of elongation, and swelling capability. We found that the more crosslinking agent in the hydrogel matrix, the higher its tensile strength and the less elongation. The hydrogels showed the highest stability during incubation in SBF and 2% hemoglobin solution. A sharp decrease in the pH of distilled water observed during the incubation of the hydrogels was probably due to the release of Aloe vera juice from the hydrogel matrices. This was additionally confirmed by the decrease in the intensity of the absorption band derived from the polysaccharides included in this additive and by the decrease in the swelling ratio after 48 h. Importantly, all hydrogels demonstrated swelling properties, and it was proven that the higher content of the crosslinking agent in hydrogels, the lower their swelling ability.


Subject(s)
Aloe , Hydrogels , Aloe/chemistry , Ascorbic Acid , Bandages , Hemoglobins , Hydrogels/chemistry , Molecular Weight , Polymers/chemistry , Polysaccharides , Spectroscopy, Fourier Transform Infrared , Water
14.
Ultrason Sonochem ; 90: 106165, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36183548

ABSTRACT

The chemotype of arylsulfonamide derivatives of cyclic arylguanidines is a source of molecules with valuable biological activities, including antimicrobial and antitumor properties. The methods of the synthesis presented in the literature are characterized with low selectivity and high environmental nuisance. In this publication, we present a developed alternative and earlier undescribed pathway C, for the synthesis of arylsulfonamide derivatives of cyclic arylguanidines (N-(1H-arylimidazol-2-yl)arylsulfonamides and N-(1,4-dihydroquinazolin-2-yl)arylsulfonamides), including reaction between 2-(methylsulfanyl)-benzimidazole or 2-(methylsulfanyl)-3,4-dihydroquinazoline with arylsulfonamides. We also optimized previously reported methods; A (reaction of 2-aminobenzimidazole or 2-amino-3,4-dihydroquinazoline with arylsulfonyl chlorides) and B (reaction of dimethyl-(arylsulfonyl)carbonodithioimidate with aryldiamines). The conducted research allowed achieving two independent ecological and quick methods of obtaining the desired products. We used ecological methods of ultrasound-assisted or microwave synthesis, solvent-free reactions and a"green" reaction environment. In both pathways, it has proven advantageous to use H2O as the solvent and K2CO3 (1 or 3 equivalent) as the basic agent. In the sonochemical variant, the efficiency reached B: 37-89 %, C: 90 % in 60 min (P = 80 W and f = 40 kHz), while in the microwave synthesis it was B: 38-74 %, C: 63-85 % in 0.5-4 min (P = 50 W). Path A led to a complementary substitution product (i.e. 1-(arylsulfonyl)-1H-benzimidazol-2-amine or 1-(arylsulfonyl)-1,4-dihydroquinazolin-2-amine). We obtained a small group of compounds that were tested for cytotoxicity. The 10f (N-(1,4-dihydroquinazolin-2-yl)naphthalene-1-sulfonamide) showed cytotoxic activity towards human astrocytoma cell line 1321 N1. The calculated IC50 value was 8.22 µM at 24 h timepoint (doxorubicin suppressed 1321 N1 cell viability with IC50 of 1.1 µM). The viability of the cells exposed to 10f for 24 h dropped to 48.0 % compared to vehicle control, while the cells treated with doxorubicin experienced decline to 47.5 %. We assessed its potential usefulness in pharmacotherapy in the ADMET study, confirming its ability to cross the blood-brain barrier (Pe = 5.0 ± 1.5 × 10-6 cm/s) and the safety of its potential use in terms of DDI and hepatotoxicity.


Subject(s)
Antineoplastic Agents , Sulfonamides , Humans , Sulfonamides/pharmacology , Sulfonamides/chemistry , Antineoplastic Agents/chemistry , Cell Survival , Sulfanilamide/pharmacology , Doxorubicin/pharmacology , Structure-Activity Relationship , Cell Line, Tumor , Molecular Structure
15.
Materials (Basel) ; 15(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36143716

ABSTRACT

Hydrogels belong to the group of polymers that are more and more often considered as innovative dressing materials. It is important to develop materials showing the most advantageous properties from the application viewpoint wherein in the case of hydrogels, the type and the amount of the crosslinking agent strongly affect their properties. In this work, PVP-based hydrogels containing Aloe vera juice and L-ascorbic acid were obtained via UV-induced polymerization. Next, their surface morphology (via both optical, digital and scanning electron microscope), sorption capacity, tensile strength, and elongation were characterized. Their structure was analyzed via FT-IR spectroscopy wherein their impact on the simulated body liquids was verified via regular pH and temperature measurements of these liquids during hydrogels' incubation. It was demonstrated that as the amount of the crosslinker increased, the polymer structure was more wrinkled. Next, hydrogels showed relatively smooth and only slightly rough surface, which was probably due to the fact that the modifiers filled also the outer pores of the materials. Hydrogels demonstrated buffering properties in all incubation media, wherein during the incubation the release of Aloe vera juice probably took place as evidenced by the decrease in the pH of the incubation media and the disappearance of the absorption band deriving from the polysaccharides included in the composition of this additive. Next, it was proved that as the amount of the crosslinker increased, hydrogels' crosslinking density increased and thus their swelling ratio decreased. Hydrogels obtained using a crosslinking agent with higher average molecular weight showed higher swelling ability than the materials synthesized using crosslinker with lower average molecular weight. Moreover, as the amount of the crosslinking agent increased, the tensile strength of hydrogels as well as their percentage elongation also increased.

16.
J Biomed Mater Res B Appl Biomater ; 110(12): 2649-2666, 2022 12.
Article in English | MEDLINE | ID: mdl-35816273

ABSTRACT

Hydroxyapatite (HAp) constitutes a significant inorganic compound which due to its osteoinductivity, osteoconductivity as well as the ability to promote bone growth and regeneration is widely applied in development of biomaterials designed for bone tissue engineering. In this work, various synthesis methodologies of HAp based on the wet precipitation technique were applied, and the impact of pH of the reaction mixture, the concentration of individual reagents as well as the type of stirring applied (mechanical/magnetic) on the properties of final powders was discussed. Spectroscopic methods (Fourier transform infrared, Raman) and X-ray diffraction allowed to verify the synthesis parameters leading to obtaining calcium phosphate with 96% HAp in phase which indicated higher homogeneity of obtained powder (93.4%) than commercial HAp. Powders' morphology was evaluated using microscopic techniques while specific surface area was determined via Brunauer-Emmett-Teller analysis. Particle size distribution, porosity of powders, and stability of HAp suspensions were also characterized. It was proved that synthesis at pH = 11.0 using mechanical stirring resulted in calcium phosphate with a high phase homogeneity and homogeneous pore size distribution (6-20 nm). Moreover, obtained HAp powder showed 71.8% more specific surface area than commercial material-that is, 110 m3 /g for synthetic HAp and 64 m3 /g in the case of commercial powder-which, in turn, is significant in terms of its potential application as carrier of active substances. Thus it was demonstrated that by applying appropriate conditions of HAp synthesis it is possible to obtain powder with properties enhancing its application potential for medical purposes.


Subject(s)
Calcium Phosphates , Durapatite , Biocompatible Materials , Durapatite/chemistry , Hydrogen-Ion Concentration , Indicators and Reagents , Powders , Spectroscopy, Fourier Transform Infrared , Suspensions , X-Ray Diffraction
17.
Materials (Basel) ; 15(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744106

ABSTRACT

The interest in magnetic nanoparticles is constantly growing, which is due to their unique properties, of which the most useful is the possibility of directing their movement via an external magnetic field. Thus, applications may be found for them as carriers in targeted drug delivery. These nanomaterials usually form a core in a core-shell structure, and a shell may be formed via various compounds. Here, nanosilver-shelled iron oxide magnetic nanoparticles were developed. Various reaction media and various Arabic gum (stabilizer) solution concentrations were investigated to verify those that were most beneficial one in limiting their agglomeration as much as possible. The essential oil of lavender was proposed as a component of such a medium; it was used alone or in combination with distilled water as a solvent of the stabilizer. The particle size was characterized by dynamic light scattering (DLS), the chemical structure was characterized via FT-IR spectroscopy, the crystallinity was characterized by X-ray diffraction (XRD), and the surface morphology and elemental composition were verified via the SEM-EDS technique. Moreover, UV-Vis spectrophotometry was used to verify the presence of the shell made of nanosilver. Importantly, the particles' pro-inflammatory activity and cytotoxicity towards L929 murine fibroblasts were also characterized. It was demonstrated that a 3% stabilizer solution provided a preparation of Fe3O4@Ag particles, but its stabilizing effect was not sufficient, as a suspension with micrometric particles was obtained; thus it was necessary to apply 4 h of sonication for their crushing. Next, the oil/water reaction medium was verified as beneficial in terms of nanoparticle formation. In such reaction conditions, the formation of particle agglomerates was strongly limited, and after 15 min of sonication a suspension containing only nanoparticles was obtained. The presence of a nanosilver shell was confirmed spectrophotometrically via XRD and SEM-EDS techniques. Importantly, the developed nanomaterials showed no cytotoxicity towards murine fibroblasts and no pro-inflammatory activity.

18.
Materials (Basel) ; 15(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35591718

ABSTRACT

Core-shell nanostructures are widely used in many fields, including medicine and the related areas. An example of such structures are nanogold-shelled Fe3O4 magnetic nanoparticles. Systems consisting of a magnetic core and a shell made from nanogold show unique optical and magnetic properties. Thus, it is essential to develop the methodology of their preparation. Here, we report the synthesis methodology of Fe3O4@Au developed so as to limit their agglomeration and increase their stability. For this purpose, the impact of the reaction environment was verified. The properties of the particles were characterized via UV-Vis spectrophotometry, dynamic light scattering (DLS), X-ray diffraction (XRD), and Scanning Electron Microscopy-Energy Dispersive X-ray analysis (SEM-EDS technique). Moreover, biological investigations, including determining the cytotoxicity of the particles towards murine fibroblasts and the pro-inflammatory activity were also performed. It was demonstrated that the application of an oil and water reaction environment leads to the preparation of the particles with lower polydispersity, whose agglomerates' disintegration is 24 times faster than the disintegration of nanoparticle agglomerates formed as a result of the reaction performed in a water environment. Importantly, developed Fe3O4@Au nanoparticles showed no pro-inflammatory activity regardless of their concentration and the reaction environment applied during their synthesis and the viability of cell lines incubated for 24 h with the particle suspensions was at least 92.88%. Thus, the developed synthesis methodology of the particles as well as performed investigations confirmed a great application potential of developed materials for biomedical purposes.

19.
Materials (Basel) ; 15(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35454529

ABSTRACT

Matricaria chamomilla L. extract is well-known for its therapeutic properties; thus, it shows potential to be used to modify materials designed for biomedical purposes. In this paper, acrylic hydrogels modified with this extract were prepared. The other modifier was starch introduced into the hydrogel matrix in two forms: room-temperature solution and elevated-temperature solution. Such hydrogels were synthesized via UV radiation, while two types of photoinitiator were used: 2-hydroxy-2-methylpropiophenone or phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide. The main task of performed research was to verify the impact of particular modifiers and photoinitiator on physicochemical properties of hydrogels. Studies involved determining their swelling ability, elasticity, chemical structure via FTIR spectroscopy and surface morphology via the SEM technique. Incubation of hydrogels in simulated physiological liquids, studies on the release of chamomile extract from their matrix and their biological analysis via MTT assay were also performed. It was demonstrated that all investigated variables affected the physicochemical properties of hydrogels. The modification of hydrogels with chamomile extract reduced their absorbency, decreased their thermal stability and increased the cell viability incubated with this material by 15%. Next, hydrogels obtained by using phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide as a photoinitiator showed lower absorbency, more compact structure, better stability in SBF and a more effective release of chamomile extract compared to the materials prepared by using 2-hydroxy-2-methylpropiophenone. It was proved that, by applying adequate reagents, including both photoinitiator and modifiers, it is possible to obtain hydrogels with variable properties that will positively affect their application potential.

20.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613661

ABSTRACT

The interest in the application of plant extracts as modifiers of polymers intended for biomedical purposes is constantly increasing. The therapeutical properties of the licorice root, including its anti-inflammatory and antibacterial activity, make this plant particularly promising. The same applies to silver nanoparticles showing antibacterial properties. Thus the main purpose of the research was to design hydrogel dressings containing both licorice root extract and nanosilver so as to obtain a system promoting wound regeneration processes by preventing infection and inflammation within the wound. The first step included the preparation of the plant extract via the solid-liquid extraction using the Soxhlet extractor and the synthesis of silver nanoparticles by the chemical reduction of silver ions using a sodium borohydride as a reducing agent. Subsequently, hydrogels were synthesized via photopolymerization and subjected to studies aiming at characterizing their sorption properties, surface morphology via scanning electron microscopy, and their impact on simulated physiological liquids supported by defining these liquids' influence on hydrogels' structures by FT-IR spectroscopy. Next, the tensile strength of hydrogels and their percentage elongation were determined. Performed studies also allowed for determining the hydrogels' wettability and free surface energies. Finally, the cytotoxicity of hydrogels towards L929 murine fibroblasts via the MTT reduction assay was also verified. It was demonstrated that developed materials showed stability in simulated physiological liquids. Moreover, hydrogels were characterized by high elasticity (percentage elongation within the range of 24-29%), and their surfaces were hydrophilic (wetting angles below 90°). Hydrogels containing both licorice extract and nanosilver showed smooth and homogeneous surfaces. Importantly, cytotoxic properties towards L929 murine fibroblasts were excluded; thus, developed materials seem to have great potential for application as innovative dressings.


Subject(s)
Glycyrrhiza , Metal Nanoparticles , Mice , Animals , Hydrogels/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Antioxidants , Bandages
SELECTION OF CITATIONS
SEARCH DETAIL
...